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A S H A L L O W  S O L I D  B O D Y  A P P R O A C H I N G  T H E  I N T E R F A C E  OF T W O  M E D I A  

A. A. Korobkin  and T. I. Khabakhpasheva UDC 532.58 

The plane unsteady problem of vertical motion of a shallow undeformable contour in a two-layer fluid 
is considered. At the initial moment, the body is in the upper fluid layer, and both the depth of the lower 
layer and the body-interface distance are assumed to be small compared with the characteristic linear size of 
the body. The body then begins to move vertically toward the interface. We consider the problem within the 
framework of two-layer shallow-water theory with emphasis on the possibility of and the conditions for the 
appearance of mixing zones. A model that describes such a flow is proposed and analyzed numerically. 

The problem of a body approaching the interface of two media and its subsequent penetration into a 
lower fluid is of both theoretical and practical interest. This interest was aroused in the early 1960s and is 
connected with the pioneer investigation performed by Chuang [1] who demonstrated the role of air during 
the fall of a body on the surface of water and showed that before a falling body contacts the fluid, the free 
boundary has already been deformed by an air flow pushed by the body. It has been revealed that in the case 
of fall of a fiat-bottom body, the deflection of the free bound.ary is so significant that a cavity is formed, which 
is closed at the moment of contact of the body and the fluid. The effect of the trapped air in the problem 
of fall of a body on the surface of water was later studied by many authors (see, e.g., [2, 3]). However, in 
all theoretical and numerical investigations, water and air were regarded as immiscible media with a distinct 
interface between them. This assumption is not always true from the physical viewpoint. The point is that 
as the distance between the bottom of the body and the interface decreases, the velocity of air outflow from 
beneath the bot tom increases, which leads to the instability of the interface and the formation of air-water 
mixing zones [4]. Such zones can be formed only in regions in which the outflow velocity is sufficiently large 
[5]. At the moment of cavity closing, the body is in contact with an air-water mixture rather than with water. 
The air continues to flow out from the cavity through the mixing layer, giving rise to its growth and water 

,/ 
spraying. 

The goal of the present paper is to find conditions under which mixing zones appear and to estimate the 
dimensions and positions of these zones. The air motion in a thin layer between the liquid free surface and a 
shallow solid body approaching the liquid is usually considered within the framework of the one-dimensional 
approximation, and a liquid flow is usually considered within the framework of the linear approximation. 
Before analyzing the general nonlinear problem of body motion in a two-layer fluid, it is useful to examine 
in detail the simplest case of a thin lower layer using a shallow-water approximation for two-layer flows. The 
importance of the shallow-water theory for investigation of the general problem of unsteady fluid motion in 
the presence of a free boundary or the interfaces of layers 
of the problem within the framework of the shallow-water 
of the problem in the general case. 

of different density is well known [6, 7]. An analysis 
theory will give us ideas for an adequate formulation 

F o r m u l a t i o n  of  t h e  P r o b l e m .  We consider the vertical motion of a shallow symmetric contour in a 
two-layer fluid (Fig. 1). The body and the fluid are at rest until a certain moment of time which is regarded 
as the initial one. The point at which the symmetry line of the body intersects the layer interface is regarded 
as the origin of the Cartesian coordinate system x~Oy ~. Here and below, the dimensional variables are primed. 
The lower layer is bounded from below by a horizontal undeformable bottom. At the initial moment (t ~ = 0), 
the body starts to move vertically downward with velocity V. We shall determine the velocity fields u+(x t, t ~) 
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and u - (x ' ,  t'), the pressures p~.(x', t') and p ' ( x ' ,  t') in the upper and lower layers, and the evolution of the 
interface y' = r t') under the following assumptions: the fluid is ideal and incompressible and the fluid 
flow is irrotational. Hereinafter, the plus and minus signs refer to the upper and lower layers, respectively. The 
body-fluid system is in the gravity field with acceleration of gravity g. Capillary forces with surface-tension 
coefficient a act at the layer interface. For t' > 0, the body's position is determined by the equation 

y' = h + f ( x ' / L ) -  Vt'  + h+, 

where L is the characteristic linear size related to the geometry of the body, the dimensionless function f ( x )  
describes the body shape, h+ is the initial distance from the body top to the interface, and h_ is the initial 
depth of the lower layer [h+/hq = O(1)]. The characteristic horizontal linear scale of the process L is assumed 
to be considerably greater than the corresponding vertical scale h+, i.e., e = h+/L << 1. This points to the 
possibility of using the two-layer shallow-water theory for flow description. The function f ( z )  is such that 
f(O) = O, f'(O) = O, and x / f  (x) ----} 0 at x ---} ~ and f ( - x )  = f ( z ) .  

Below, we use dimensionless variables which are introduced as follows: 

x' = Lx, y' = h+y, t' = h+t/V, ,  v' = Vv,  u' = V c - l u ,  

t = p_V2~-2p_, = h+~. p+ = p+V2e-2p+, p~_ ~' 

Here p+ and p_ are the densities of the upper and lower media, respectively, and u(x, y, t) and v(x,  y, t) are 
the horizontal and vertical components of the velocity vector u = (u, v). 

It is convenient to describe the fluid flow in terms of the stream function r  y, t) and a new desired 
function h(x, t) such that 
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h(z, t) = - / ~(~, t) d~. (1) 
" 0 

The equations of motion and the boundary conditions take, in dimensionless variables, the following forms: 

2 + e x z + r  ( - h z ( x , t ) < y < f ( x ) - t + l ) ,  

P~;~  +r = 0 ( - a  < y < -h~(x ,0 ) ,  

h , ~  f +  p_  = ~tp+ + ~ ( l  + c~h~)3/e,_ ~ -  = = h t ( x , t )  [y = - h ~ ( x , t ) ] ,  (2) 

r  ( y = f ( x ) - t + l ) ,  r  ( y = - a ) ,  

r162 (Ixl--*cc, t>0), r h=0  (t<0), 

where # = p+/p_, 0 < # < 1, a = h_/h+, and/3 = ah3+/(p_V2L4). The pressure p is related to the stream 
function by the following momentum equations, which are of the same form both for the upper and lower 

layers: 

u, + uu,: + vt ty + p,~ = O, ~[vt + uv~ + vvy] + p~ + a = 0, (3) 
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where a = ca(gL/V2) .  In each layer, the condition that the flow is potential yields 

uy = s2vx. (4) 

We shall find an approximate solution of problem (1)-(4) for t > 0 and e << 1. Note that within the framework 
of the incompressible-fluid model, the fluid and interface velocities are set up instantaneously for the impulsive 
start of the body. These velocities are calculated using the Sedov impact theory [8] and determine the initial 
conditions for system (2) at t = +0. 

S h a l l o w - W a t e r  A p p r o x i m a t i o n .  The solution of problem (1)-(4) is searched for as a series in 
integral powers of the parameter  c. Assuming that ~ = O(1) and a = O(1) for e ---* 0, we obtain 

u(x ,  y, t) = U(x,  t) + 0(c2),  p(x,  y, t) = - a y  + P(x ,  t) + O(e),  

r  = x + U+(x , t ) ( y  + t - f ( x )  - 1) +O(e2) ,  (5) 

= + + = + 

Here 

u ( x , t ) -  hlO) hlO) 
H ( x , t ) '  Q+ = x - , Q_ = , 

(6) 

H+ = f ( x )  - t + l + h (~ H_ = a - h (~ 

With allowance for (3)-(5), the dynamic condition at the interface of the media ensures that 

U~- + U - U ;  = #[U + + U+U +] + a(1 - #)h (~ + Sh(_~ + O(c 2 + ~c2). (7) 

Replacing U+( x , t )  and U - ( x , t )  by their relations (6) in (7), we obtain one quasi-linear differential 
equation relative to the function h(~ In what follows, the subscript (0) is omitted. In a first 
approximation, we have 

Ahu  + 2Bhzt  + Chxz  + Bhzzz~: = D, (8) 

where 

A = H~_H2_(H+ + laH-),  B = H+H_(H~ .Q_  + I~H2Q+), 
(9) 

C = H 3 ,o2 H 3 + ~ _  + ~ _Q~ - (1 - IJ)aH~_Ha__, D = ~Ha_Q+(2H+ - f ' ( x )Q+) .  

By virtue of flow symmetry,  Eq. (8) is considered only for x > 0. The boundary conditions for Eq. (8) 
are of the form 

h(O,t) = O, hzz(O,t)  = O, h ( x , t )  ~ O, h~(z , t )  ~ 0 (x---* oa), (10) 

and the initial conditions are as follows: 

h(x,  +0) = O, ht(z ,  +0) = b(x). (11) 

To define the function b(x), we integrate Eq. (7) over time from - 6  to 6 and take the limit as 6 --o 0. We find 
U - ( x ,  +0) = i~U+(x, +0). With allowance for (6), we obtain 

a#x (12) 
= 1(2)  + 1 + at" 

Problem (8)-(12) contains four parameters a, #, a,  and ~, the importance of each parameter  being dependent 
on its magnitude. 

In deriving Eq. (7), we can ignore the fluid viscosity under the condition that 

V << m a x ( v + , v - ) / h + ,  (13) 

where v is the kinematic viscosity coefficient. The contribution of the surface-tension forces will be of the 
order of the terms ignored in (7) under the condition ~ = O(s2). If ~ = O(1), these forces play the major 
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role. Similar conditions for gravity are as follows: a(1 - #) = 0(~ 2) and a(1 - #) = O(1). This means that  
Eq. (8) corresponds formally to the initial equation with accuracy up to O(e 2) if the conditions 

l ah+  
V << p_L2 , (14) 

V << ~ (15) 

are satisfied. If condit ion (14) is not satisfied, one should set /3 = 0 in (8), whereas if condition (15) is not 
satisfied, one should set a = 0. On the other hand, the surface-tension and gravity forces play a key role in 
the problem of body mot ion to the interface if/3 = O(1) and c~(1 - #) = O(1), respectively. 

We explain the meaning of these conditions by way of example. Let a parabolic contour with the radius 
of curvature R = 100 m at its top be initially in air at a distance h+ = 1 cm from the free boundary of a 
water layer. In this case,we have L = ~ = 1 m and e = 0.01. Unlike other effects, water viscosity can 
be ignored if the body velocity is substantially greater than 1 mm/sec ,  which follows from (13). Inequalities 
(14) and (15) give V << 0.85 mm/sec  and V << 31 cm/sec,  respectively. This implies that  in the cases of 
practical impor tance  where the impact  velocity is approximately a few centimeters per second or higher, the 
viscosity and surface-tension forces can be ignored. If the impact  velocity is of the order of a meter  per second 
or higher, the gravity effects can be disregarded. 

Q u a l i t a t i v e  A n a l y s i s  of  t h e  M o d e l .  We consider a range of body velocities such tha t /3  << 1 and 
c~(1 - #) = O(1). In this case, Eq. (8) is the inhomogeneous quasi-linear second-order differential equation. 
The type of this equation is determined by the sign of the relation A(x, t, c~,/z, a) = B 2 - AC. For A < 0, 
the equation is of elliptic type and, for A > 0, it is of hyperbolic type. The quant i ty  A depends not only on 
the parameters a ,  /~, and a, but  also on the independent  variables x and t, and, therefore, the type of the 
equation can change with time. Calculations yield 

A(x ,  t, c~,#, a) = (H+H_)S(a(1 - # ) ( H +  + / a S _ ) -  #(U + - U-)2) .  (16) 

The ellipticity regions with A < 0 appear where the velocity shear [U + - U-[  is large. The  velocity shear is 
small near the symmet ry  axis [U+(0,/) = U-(O,t)  = 0], and A > 0 for any time. The  fluid velocity decays 
with distance from the symmet ry  axis (Ix] --* ~ ) ,  and, hence, A > 0. Thus, the ellipticity regions of Eq. (8) 
are separated from the symmet ry  axis for/3 = 0 and are of finite dimensions. Let us determine the restrictions 
on the problem parameters  at which the equation is of parabolic type at the initial moment  (t = +0). The 
condition A(x, +0,  a ,  #, a) > 0 yields 

( ~ > # ( 1 - t t )  max ( z2 ) 
0 < x < =  (f(x) + 1 + # a )  3 " (17) 

For a parabolic contour [ / (x)  -- x2/2], we have 

8 #(1 - ~) 
a > 27 (#a + 1) 2. (18) 

In the case where a = 1, h+ -- 1 cm, R = 100 m, and tt = 0.001 (water-air system), the latter inequality leads 
to the restriction on the body velocity V ~< 18 cm/sec with satisfaction of which the initial data  (11) and (12) 
lie within the hyperbolicity region of Eq. (8) for/3 = 0 and all values of x. At large velocities of the contour, 
the ellipticity regions, whose dimensions can be used to approximate the initial length and position of the 
air-water mixing zone, appear. We denote the limiting value of the velocity V at which Eq. (18) becomes an 
equality by V.. For the left xi and right xr boundaries of the ellipticity region, we then have the equation 
(x > 0) 

8(V,/V)2(0.5v 2 + 1 + #a) 3 = 27(1 + #a)2x 2. (19) 

It is convenient to introduce the following notation: Y = x 2 + A, )~ = 2(1 +/aa) ,  and ~ = 27A2V2/4V.2 by 
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Fig. 2 

means of which we can rewrite Eq. (19) as follows: y3 _ eeY + aeA = 0. This cubic equation yields 

xl ~/ V .  ( 6  1 ~___,) V / ~ =  3~**sm - S a r c c ~  - I ,  

In particular, for 0 < ( V , / V  - 1) << 1, we obtain 

v/~-v~  2 ( - 1  +0 7 - 1  , 

V/~ = ~-, sm - ~  arccos - 1. (20) 

"r 1 1 i 1) 
v q  = 

Thus, for V < V, the initial data  (11) and (12) lie in the hyperbolicity region. With V = V,, this property 

is violated at the point with coordinate x, = ~ = ~ .  When V >/ V,, an explosive growth of 
the ellipticity region occurs. Note that, for small ( V  - V , ) / V , ,  it expands symmetrically with respect to the 
point x,. For V / V ,  ---* oo, we have 

r  = '  v,J 

For sufficiently large velocities of body motion (approximately several meters per second), the ellipticity 
region occupies almost the entire flow region. This indicates that after the impact stage during which 
the incompressible-fluid model is not applicable, a mixing layer, whose parameters should enter the initial 
conditions for Eq. (8), is formed. Proceeding from the assumption that the thickness of the mixing layer 
increases with an increase in the velocity U+(x ,  O) - U - ( x ,  0), one can state that  this thickness is equal to 
zero on the symmetry axis where the equation degenerates, grows as x increases, reaches its maximum value, 
and decays slowly for x ---* oo. 

N o - G r a v i t y  A p p r o x i m a t i o n .  It is important to note that  within the no-gravity approximation 
a = 0, when the initial conditions lie in the ellipticity region, deformations of the interface near the symmetry  
axis (x = 0) can be determined in a rather simple way and independently of the flow in the entire region. 
We consider (8) for x = 0. To do this, we divide both parts of the equation by ht and pass to the limit for 
x ---* +0. We obtain the ordinary differential equation relative to a new desired function z ( t )  = ( (0 ,  t)  

g , ( z ,  t ) z "  - 2g2(z, t)(z') 2 + g3(z)z '  = g4(z). (21) 

Here g l ( z ,  t) = (1 - z - t ) ( z  + a)(1 - t + a/~ - z(1 - / J ) ) ,  g2(z,  t) = (1 - z - t) 2 - #(z + a) 2, g3(z) = 4/~(z + a) 2, 
and g4(z) = - 2 # ( z  + a) 2. The initial conditions for (21) follow from (11) and are of the form 

z (o)  = o, = - a v l ( 1  + 

The variation in the gap between the interface and the top of a body approaching this interface 
1 - t - z ( t )  for a = 0 and/~ = 0.8 is shown by curve 4 of Fig. 2. This curve depends on the fluid densities 
and is not dependent on the body velocity. For small values of #, the corresponding curve almost coincides 
with the Ox axis until t = 1. 

M o d e l  w i t h  A l l o w a n c e  for M o m e n t u m  E x c h a n g e  b e t w e e n  t h e  Layers .  If the type of Eq. (8) 
changes with time, the problem becomes nonevolutionary on some sections of the z axis, and it is impossible 
to continue a numerical simulation of the flow on the basis of this equation. The flow changes in such a way 
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that  Eq. (8) becomes invalid from the physical viewpoint. A model that  makes it possible to describe such 
flows was proposed by Liapidevskii [4]. To apply this model, we define the Richardson number  

~ ( 1 - # )  H + + # H _  
ni(x ,  t) - 

(g+ - U-)~ 

and supplement  the formulat ion of problem (8)-(12) by the restriction 

Ri (x, t) > /N,  (22) 

where N is the parameter  of the process (N > 1). Formula (16) gives A(z , t )  = ~ ( H + H _ ) s ( U + - U - ) 2 ( R i _ I ) .  
Hence, with allowance for (22), we have A > 0 for all values of z and t up to the moment  of contact of the 
solid surface with the layer interface when H+ = 0. If the initial data  (11) lie within the hyperbolicity region 
[A(x, 0) > 0], the solution of problem (8)-(12) can be constructed numerically up to tl at which Ri (xl, tx) = N 
at a certain point Xl. Moreover R i (x , t )  > N for t < tl and Ri(x, t l)  > N for x ~ xl.  For t > tl ,  there is 
an interval x E [xl(t),Zr(t)] inside which R i (x , t )  - N; note that  zt(tl)  = zr(Q) = Xl. Outside this interval, 
Ri > N, and the calculation can be performed using the initial model (8)-(12). This approach is valid only 
if dxt/dt < 0 and dxr/dt  > 0, which is fulfilled as early as at the initial stage of formation of the indicated 
interval. 

Inside the specific zone, it is assumed that  Ri (x, t) = N, which leads to the following equation with 
first-order partial derivatives: 

( z - h t  ht )2 c r ( 1 - # ) [ f ( z ) _ t + l + h z ( l _ # ) + / ~ a ] .  (23) 
N f ( z ) - t + - i + h ~  a - h ,  = 1~ 

The initial conditions for Eq. (23) follow from the requirement for matching solutions in each zone. 
Once the problem has been solved, we find the interface shape in the specific zone and the velocities in each 
layer according to formulas (6). However, it is evident that  the momen tum equation (3) is not satisfied in 
each layer because of the  m o m e n t u m  transfer between the-layers [4]. Therefore, one should use more general 
relations to find the pressure: we assume that  the integral law of conservation of m o m e n t u m  holds true in each 
volume f~(k, t) = {x, y :  ~ < x < Xr(t), - a  < y < f (x )  + 1 - t}, where xt(t) <~ ~ <~ Xr(t). The pressure varies 
with depth in accordance with the hydrostat ic law and is continuous at the interface, from which follows that  
p+ ( x, y, t) = -cry + F(x, t) and p-  ( x, y, t) = - a y  + pF(x, t) + a(1 - p )~ ( x, t ). The integral law of conservation 
of momen tum for the volume f~(~, t) makes it possible to obtain the formula for the function F(x, t) 

~,(t) 

r(~,t)  = r(x, , t )  + _(n+(~, t )  - n _ ( ~ , t ) )  -1 (1 - u )  hu(z , t )dz+ 
H_(x , , t )  

t)] 
g_(&,t'----"--) +1~ t g + ( z , , t )  H+(~, t )J  + U T ( Y ~ ( ~ ' t ) - y 2 ( x r ' t ) )  

_ 2 (1 - /~)(r  t) - r t)) + ~a(1 - U)(r - r t))} 
2 

where F(xr(t), t) can be found from the momentum equation in the half-band x > x~(t). 
A p p e a r a n c e  of  a Spec i f i c  Zone .  With separation of the zones of m o m e n t u m  exchange between 

the layers, problem (8)-(12) and (23) formulated above is rather complicated, because the positions of the 
boundaries of specific zones are not known beforehand and should be determined together with the solution 
of the problem from some additional conditions. To formulate these conditions, we consider a particular case 
of the motion of a wedge If(x)  = Ixl and L = h+/k, where k << 1] toward the interface of two media. The 
wedge velocity is constant  and is such that  Ri = 1 only at two points z = -t-z, of the Ox axis at the initial 
moment  t = 0. Calculations, which are similar to those performed in derivation of Eq. (19), ensure x, = ~, 
where ~ = 2(1 +/~a).  The  wedge velocity V, must be such that  (~ = 8/~(1 -/z)/(27,~).  The initial conditions 
(11) and (12) and the determinat ion of the Richardson number  show that  Ri (x, 0) = (2x + ,~)3x-2(27,~)-1, 
Ri (z, ,  0) = 1, (ORi/Ox)(x,,  0) = 0, and (02Ri/Oz2)(x,, 0) = 2/(3X2). Figure 3 shows the graph of the function 
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x-2 

Ri (x, 0) - 1 for # = 0.8 and a -- 1. Equat ion  (8) gives 

8# [a(5A + 2) - (A - 2)(A + i)] ht t (x , ,  O) = ~ 

from which follows 

0 R i .  R R = 1 [10(1 - , )  -4- A(22 - , ) ] .  
- ~  ( x , , O ) =  3A2, 

The expansion of Ri (x, t) in integer powers of x - A and t in the  vicinity of the point  of first appearance  of 
the specific zone (x = A, t = 0) can be wri t ten as 

1 
Ri (x, t) = 1 + ~ -  [(x - A) 2 - 2 Rt] + . . . .  

Hence, the curve Ri = 1 is parabol ic  in the  neighborhood of the point  x = A, t = 0: 

1 ( = _  ~)2, (24) t=-~ 
where R is the radius of curva ture  at the  parabola  top. It is worth  noting tha t  R tends to the finite limit for 
, --+ 0, which is equal to 6. 

Equat ion (8) is of hyperbol ic  type  in a narrow gap be tween  the parabola  (24) and the Ox axis for 
Iz - A I << 1. We write  the  corresponding equat ion of characterist ics in the  form 

d__~z U + - U- 
= u -  + { . H _  �9 (2S) 

dt H + + # H -  

Two characterist ics arrive at each point of the bounda ry  of the  specific zone. They  have the same slope 
at the boundary  of the hyperbol ic i ty  zone 

( d x ) l  U - H + +  # U + H  - 
Ri=l = H +  + ~ tH-  > 0, (26) 

as follows from (25). In the  general case, the normal derivat ive of the  function Ri (x, t) on the curve Ri = 1 
is different from zero. Because  of this, with distance from the boundary  of the  hyperbol ic i ty  region, the gap 
between the characteris t ics  increases proport ional ly to the dis tance to the 3 /2  power. Near the  point  x = A, 
t = 0 Eq. (25) can be replaced by the approximate  one 

dx = bl - b2(z - A) + b3~/(x - .X) 2 - Rt  + . . .  (27) 
dt 

h = [2.(1 + ~) + ~ -  21, b~ -- 2 - ~ - ( a  + 3), b3 - 9 ~ a ~  ~ / .a (1  + ~) . 

Figure 4 shows the qual i ta t ive  behavior  of the characterist ics determined by Eq. (27) for , = 0.8, a = 1, 
I x -  11 < 0.1, and 0 < t < 6 . 1 0  .4  . 

Taking the above analysis into account ,  one can describe the evolution of the process of approach of the 
wedge to the layer interface as follows. Specific zones appear  at the points = = + t  at the initial moment  and 
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expand very rapidly. For the external boundaries of these zones [x = -t-zr(t)], one can indicate a moment  tr at 
which the fluid flow is not dependent on the processes occurring in the specific zones in the region [x I > Zr(t), 
0 < t < t~. For t < t~, the characteristics arrive at the curves x = +z,.(t) from the Oz axis and determine the 
solutions on them. 

The characteristics always reach the internal boundaries of specific zones Ix = zl(t)]. It is noteworthy 
that the position of the internal boundaries of specific zones for t > 0 is not dependent on the processes 
proceeding in these zones. The fluid flow (but not the pressure) in the internal domain [Izl < zt(t)] can, 
therefore, be found independently. 

For N = 1, a = 8p(l  - #)/(27A), and A = 2(1 + #a), the characteristics of Eq. (23) have the positive 
slope 

H + H - ( U  + - U- )  dz U+H - + U - H  + 1 (1 - #) �9 (28) 
d-"-[ = H + + H -  + 5 (g+  + H - ) ( H  + + ~ H - )  

It is seen from Eq. (28) that  at least at the initial stage of growth of specific zones, the solutions for z > zr(t) 
and zt(t) < z < x , ( t )  are smoothly conjugate. With H + ---* 0 the characteristics (25) and (28) have the same 
slope equal to U+(x, t). 

N u m e r i c a l  R e s u l t s .  The initial boundary-value problem (8)-(12) with limitation (22) is not a classical 
one. In view of this, we first performed its numerical study and clarified the basic features of the process of 
approach of a shallow body to the interface of two media. We considered two cases: (1) a water-incompressible 
gas system with density ratio # = 0.01 (the gas density is 10 times greater than the air density); (2) a water-  
kerosene system with p = 0.8. The body velocity was equal to 5 cm/sec in the first case and 5 mm/sec  in 
the second one. In all calculations, h_ = 2 cm and h+ = 1 cm, and the body has a parabolic contour with 
a 100-m radius of curvature at its top. Here L = 1 m, a = 2, and ~ = 0.01. Note that,  for these values of 
the parameters, condition (14) is not satisfied, and, hence, surface-tension forces can be ignored and one can 
set/3 = 0 in Eq. (8).The numerical results are given in dimensionless variables, which were introduced above. 
The distance from 0 to 1 corresponds to 1 cm in the vertical direction and 1 m in the horizontal direction. 

To solve problem (8)-(12) in the hyperbolicity region of the plane z , t ,  we employed the method of 
characteristics for the functions hz(x, 1) and ht(z, 1). On the characteristics with the slope 

dQ,2 B -4- 

dz C 
the conditions 

Oht dtl,2 cgh~ 
A ' ~ r  +'-~--x C-~r  = D, 

which determine h~(x, t) and ht(x, t) at the point of intersection of the characteristics, are satisfied. 
At the beginning of the body motion, the Ri and, hence, A(x,  t) values are large, and the families of 

characteristics have different slopes. On approaching the specific zone, A(z,  t) decreases, and the slopes of the 
characteristics become closer. The characteristics are parallel to each other at the boundary of the specific 
zone [A(z, t) = 0], which does not allow us to continue calculations with the Ri values close to 1. As soon as 
the Ri value becomes equal to the chosen N at a certain point, one characteristic of the first-order differential 
equation (23) (see, e.g., [9, Sec. 10.2]) is constructed starting from this point, along which the quantities hz 
and ht are transported. It is easy to show that at high flow velocities in the upper layer, the slopes of the 
characteristics of Eqs. (8) and (23) coincide at the boundary of the specific zone. 

Figure 2 shows the mutual  location of the body top (curve 1) and the central point of the interface 
with p = 0.01 (curve 2) and # = 0.8 (curves 3 and 4), where curve 3 and curves 2 and 4 correspond to a 
weightless fluid and that  in a gravity field, respectively. 

Figure 5 shows the calculation results for the first case. Clearly, the presence of the upper layer does 
not exert a considerable effect on interface deformation. Equation (8) is of a hyperbolic before tl = 0.97. At 
the moment tl = 0.97, we have A ( x l , t l )  = 0 for the first time for xl = 0.35, and the type of Eq. (8) changes 
at this point. 
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In the second case, Eq. (8) is of a hyperbolic type for t < 1.58. The shape of the boundary and the 

position of the contour at t = 0.8 and 1.55 are shown in Fig. 6a and b, respectively. Figure 6b demonstrates 
that within the interval 0.75 < x < 0.95 at t = 1.55, the upper layer becomes narrower, which leads to an 
increase in the flow velocity in this section of this layer and, as a consequence, to a change of the type of Eq. 
(8). The hyperbolicity of the equation is violated at x = 0.93 for the first time. 

In the second case, Fig. 7 in the plane (x, t) shows curves 1-3 on which Ri = 5, 10, and 15. For x = 0 
and z --* oo, the difference in the velocities in the layers equals zero and, hence, Ri = oo. Near the point 
z = 0, for t > 1.8 the variation in Ri is significant as z Or t changes little. Equation (8) is of hyperbolic type 
below the curve Ri = 1 and of elliptic type above this curve. The curves Ri(x, t)  = N (N ~< 1) are spacelike. 
Two characteristics of Eq. (8) that  determine the solution completely arrive at each point of these curves from 
the hyperbolicity region. The characteristic of Eq. (23) which remains within the zone on the t ime interval 
considered comes out of each point of the curves Ri = N to the specific zone. 

Figure 8 shows the numerical results for the water-kerosene system according to the model of [4], for 
which Eq. (23) with Ri = 5, 10, and 15 is satisfied (curves 1-3; curve 4 corresponds to the position of the 
body). It is seen that  as the limiting Ri value decreases, the upper-fluid layer in the specific zone becomes 
thinner, and the elevation of the interface grows and then abruptly decreases. The limiting shape of the 
interface as Ri --* 1 is likely to have an almost vertical slope in the vicinity of x = x r ( t ) .  

The capillary forces (/3 r 0) give rise to smoothing the interface shape. With small/3, these forces can be 
ignored in a first approximation everywhere, except for zones in which the interface curvature is substantial. 
Such zones should be distinguished in the course of a numerical analysis of the problem and the "inner" 
asymptotics of the solution inside these zone have to be constructed. Figure 8 shows, in particular, that the 
interface slopes do not match each other at the external boundary of the specific zones. Therefore, near the 
boundaries of the momentum-transfer  zones, capillary forces should be taken into account, independently 
of the fl value. The small value of/3 determines the dimensions of the neighborhood of the boundary of a 
specific zone in which surface-tension forces are of importance. If/~ is of the order of unity, capillary forces 
are determining in the entire flow region. In the latter case, Eq. (8) is of parabolic type and is similar to the 
equation of beam deflection in the presence of tensile efforts at its ends. This case is of great interest and calls 
for separate consideration. 

F low in a N a r r o w  L a y e r  b e n e a t h  a Body .  The process considercd ends at the momel,t of contact 
of the body surface with the layer interface if such a contact occurs, or at the moment  of contact of the body 
with the bottom if the upper layer has a nonzero thickness for t < 1 + a. In the calculations performed for 
a parabolic contour, the upper layer exists for all times. This layer becomes thinner with time, following the 
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shape of the body. This allows us to use an approximate scheme of description of the process: within the 
section Ix[ < k, where H+ << H_,  we ignore the presence of the upper  layer to evaluate the flow parameters 
in the lower layer in a first approximation.  Thus, we have 

x 
U_(x, t )  ~ H_(z , t )  ~ a +  1 + f ( x )  - t, hxz(x, t)  ,~ - f ' ( x ) .  

a -  t + 1 + f ( z ) '  

The dynamic condition at the layer interface (7) leads to the following equation relative to U+(x, t) in the 
hyperbolicity region in Izl < xdt ) :  

u, + + u + u :  =  F(x,t) (29) 

L J 

For a parabolic contour [f(x) = x2/2], it can be directly verified that  F(x,  t) >10. The liquid particles of the 
upper layer move along the trajectories dx]dt = U+(z,t), and their velocities change according to the law 

dU+ F(x,.t) 
dt # 

where d/dt is the differentiation operator along the trajectory. Hence, the liquid particles accelerate with 
distance from the symmet ry  axis. 

In the momentum-t ransfer  zone between the layers [xl(t) < Ixl < z,( t)] ,  condition (7) is replaced by 
the equality Ri(z,  t) = N which yields 

U+(z,t)  = U - ( z , t )  + ~/a(1 - #)H_ /N ,  (30) 

where the plus sign is chosen based on physical reasoning: the velocity in the upper  layer is larger than in 
the lower one. The  position of the internal boundary of a specific zone [x = xt(t)] is found from the condition 
that  the velocities that  are determined by formulas (29) and (30) are equal at this boundary. The numerical 
flow simulation wihin the original model (see Fig. 8) shows that  ~(t) < Xr(t). At this stage, the specific zone's 
external boundary [x = Xr(t)] is calculated according to model (8)-(12). 

In the model of [4] with momen tum exchange between the layers, mass transfer and mixing were not 
taken into account,  and, therefore, the approximate equation for the thickness of the upper layer H + holds: 

H + + (U+Y+)z = 0. (31) 

In particular, relations (29) and (31) give H+(O,t) ,~ Cl(a + 1 - t)q + . . .  as t --~ a + 1 with constant 
C1, which can be determined from the matching condition of the approximate and numerical solutions, and 
q =  /1/4 + - 1 / 2 .  

Thus, the model considered can be recommended for analysis of the motion of shallow bodies near the 
interface boundaries. The  upper  layer exists for all times within the model, but one can distinguish a region in 
the vicinity of the body top within which this layer is very thin. The dimensions of this region depend little on 
the Richardson limiting value (Fig. 8). The presence of a thin upper layer provides a negligible contribution 
to the fluid flow in the lower layer and to the pressure distribution along the body surface [10]. 
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